
A UNIQUE SOFTWARE SYSTEM FOR

SIMULATION-TO-FLIGHT RESEARCH

Victoria I. Chung*, Brian K. Hutchinson*

NASA Langley Research Center
MS 125B

Hampton, VA 23681

AIAA2001-4057

Abstract

"Simulation-to-Flight" is a research development
concept to reduce costs and increase testing efficiency
of future major aeronautical research efforts at NASA.

The simulation-to-flight concept is achieved by using

common software and hardware, procedures, and
processes for both piloted-simulation and flight testing.

This concept was applied to the design and
development of two full-size transport simulators, a

research system installed on a NASA B-757 airplane,

and two supporting laboratories. This paper describes
the software system that supports the simulation-to-
flight facilities. Examples of various simulation-to-

flight experimental applications were also provided.

Introduction

In 1974, NASA Langley Research Center (LaRC)

obtained a research airplane, a Boeing 737-100 series
aircraft, to conduct aviation systems and operational

research for the Advanced Transport Operating Systems
(ATOPS) program. The standard airplane systems were

modified and interfaced to a separate research system.

The airplane was named the Transport Systems
Research Vehicle (TSRV) and could be flown from
take-off through landing from the conventional forward

flight deck or from a full-size, two-crewmember,
research aft flight deck (AFD). The AFD was located
in the passenger cabin. Thrust and flight control inputs

were made by the AFD crew through control inceptors

or through a research autopilot system via a fly-by-wire
computer system. During flight research operations,

the AFD was generally flown by test subject crews
while the forward flight deck was manned by safety

Computer Engineer, Systems Development Branch

Copyright © 2001 by the American Institute of

Aeronautics and Astronautics, Inc. No copyright is
asserted in the United States under Title 17, U.S. Code.

The U.S. Government has a royalty-free license to

exercise all rights under the copyright claimed herein
for Governmental purposes. All other rights are
reserved by the copyright owner.

pilots to monitor, engage, and disengage the aft flight

deck as an in-flight safety measure.

Besides the aft flight deck, the research system installed

in the airplane consisted of four other major

experimental subsystems: three flight control
computers, a navigation and guidance system, an

electronic display system, and a data acquisition
system 1. Navigation, guidance, and flight control

computer software were hosted on a MicroVAX

computer, while the display software was hosted on
another MicroVAX computer. An integrated Air Data
Inertial Reference System (ADIRS) unit was used to

provide accelerations, velocities, airplane position, and
standard air data information to the research system.
An experimental digital data bus called the Digital
Autonomous Terminal Access Communications

(DATAC) was developed to provide transport data
from various sensors and research pallets throughout

the airplane. The DATAC was a copper-based physical
communication media which was later commercially

recognized as a prototype of the ARINC 629 standard

and was used as a computing network between research
subsystems.

A development, verification, and validation laboratory,
known as the Experimental Avionics Systems
Integration Laboratory (EASILY), was used to develop,

integrate, and preflight-validate the hardware and

software systems for a TSRV flight test. The EASILY
was equipped with VAX 4000-200 computers to

provide simulation modeling, flight management
system software, data acquisition functions, and graphic

display generation. Interface units for testing signals
associated with the ADIRS unit and the DATAC unit
were also installed in the EASILY to mimic the

architecture onboard the TSRV airplane. 2

A ground-based simulator, similar to the AFD in the
TSRV airplane, was built and used to conduct

simulation-only or simulation and flight test research

sponsored by the ATOPS program. The TSRV
simulator was equipped with eight electronic monitors,

American Institute of Aeronautics and Astronautics

eachwith6.5-insquareviewingarea.Twomonitors
weremountedin frontof eachpilotto displayflight
guidanceandsituationinformationandfour touch-
screenequippeddisplaysweremountedin thecenter
panelfor engineinformationandmulti-functiontasks
relatedto flight researchoperations.The TSRV
simulatorcabhadan out-the-windowvisualscene
capability,two two-axisprogrammableside stick
controllers,twospring-loadedrudderpedalswithtoe
brakesystems,a voice actuatedcommandsystem
(VOTAN),andtwo Control Display Units (CDUs)
installed. Simulation modeling was hosted on two

Convex computers, and the flight instrumentation

displays were generated by a Eagle 1000 Calligraphic
Raster Display System (CRDS) from Terabit Computer
Engineering. Communications between the Convex

computers, the CRDS, and the simulator cabs were
accomplished through a Computer Automated
Measurement and Control (CAMAC) network using a

high-speed fiber optic link configured in a star network
between computers and simulator sites. 3

Due to the differences between host computers,
graphics systems, and communication architecture in

the TSRV simulation and in the flight research system

on the TSRV airplane, FORTRAN programmed
software created at one facility could not be directly
reused at another facility. This resulted in two separate

developments, one for the simulation and one for the
airplane, to be done to for the same set of research
requirements and testing. These differences in facilities
also caused difficulties for correlation of simulation

data with flight test data. Langley Research Center
decided to make major upgrades to both their ground-

based simulation facilities and the flight research
systems to be able to support the research requirements

for current and future major NASA aviation programs.

A simulation-to-flight concept was developed to
improve the efficiencies of simulation and flight-
testing. The simulation-to-flight concept used the rapid

advances in computer and display technology and was
based on using common hardware, software, and
procedures for both simulation and flight-testing. This

report will describe the system level perspectives of the

simulation and flight facilities as background
information followed by detailed descriptions of the

common software for these facilities. The descriptions
focus on the key element, the commonality between

these facilities, which makes the simulation-to-flight

concept successful.

Transport Research Facilities
Overview

The simulation-to-flight concept was the basis used
during the design, development, and implementation of

the Transport Research Facilities (TRF). The TRF are

comprised of the Airborne Research Integrated

Experiments System (ARIES) B-757 airplane, the
Research System Integration Laboratory (RSIL), the
Flight System Integration Laboratory (FSIL), the

Cockpit Motion Facilities (CMF), and two simulators--
the Integration Flight Deck (IFD) and the Research
Flight Deck (RFD).

Inside the ARIES B-757 airplane is the Transport
Research System (TRS) which is the electronic system,

located in the cabin of the B-757, that drives the Flight
Deck Research Station (FDRS) located on the left-hand

side of the cockpit. The electronic flight displays in the

FDRS are driven by the TRS.

The Cockpit Motion Facility (CMF) is a building that

contains spaces for four simulator cabs including the
RFD and IFD simulators, a motion platform, a lifting
crane to move the simulator cabs on and off of the

motion platform, the RSIL, and the interface between

the simulator cabs, the RSIL, and the computers. The
RSIL is a laboratory that contains a duplicate of the

Transport Research System contained on the ARIES B-
757 airplane. The IFD and RFD simulators and the

RSIL are used to support research program

requirements and to develop and validate hardware and
software needed for flight test purposes onboard the
ARIES NASA B-757 airplane.

The Flight Systems Integration Laboratory is located in
the hanger adjacent to the ARIES B-757 airplane. The

FSIL is used for integration and maintenance of the TRS

on the airplane.

The simulation-to-flight concept used to design and
develop the TRF was based on past experience and the

research community's desire for a streamlined

simulation-to-flight process. One of the major design
goals of the simulation-to-flight concept was for the
transport research system onboard the ARIES B-757 to

readily accept software from the simulation environment
to increase the efficiency and reduce the cost of
implementing and conducting research tests. To satisfy

this goal, common hardware and software were

implemented in the research systems onboard the ARIES
B-757 airplane, in the test labs, and in the simulators.

This common system is the TRS. The simulation-to-
flight vision of conducting research from concept

formulation on a workstation to ground-based testing

with a simulator, then to flight test onboard a research
aircraft is illustrated in Figure 1.

The simulation and flight software in the TRS was
developed using an Object-oriented (OO) methodology
for designing and programming modular and robust

2

American Institute of Aeronautics and Astronautics

Simulation-to-Flight Vision
"Simulation-to-flight" concept
combines simulation & airplane
software/hardware implementation

,\02k_/.

:::_ii_:_..... Software/hardware development

iii_iiiiii_ ,_,_,_........

Programming
Workstation

Research

System

Flight

Simulation

Figure 1. Simulation-to-Flight Vision

3

American Institute of Aeronautics and Astronautics

software.ThisOOmethodologyproducedsoftwarethat
waseasytomaintainandreuse,resultinginanincrease
inthereliabilityanddevelopmentproductivity.

Airborne Research Integrated Experiments System
(ARIES) B-757 Airplane

Figure 2 is a recent picture of the NASA ARIES B-757

airplane. The ARIES B-757 airplane was the second B-
757 airplane built. Its first flight was in March 1983.

The Boeing Company used this airplane for the initial
certification of the 757's. The airplane was then flown

by Eastern Airlines as a revenue-flight aircraft. The

airplane was purchased by NASA from the Eastern
Airlines Bankruptcy estate in 1994.

After acquiring the airplane, NASA designed and
implemented a research system in the cockpit and cabin
of the airplane to support flight testing for the next 20

years. The type of testing envisioned included concept

developments for increasing the safety of commercial
jet transportation, increasing airport and airway system

capacity, and to increase the United States' economic
growth relating to the air transport system.

Flight Deck Research Station (FDRS)
The FDRS has two dedicated flight instrument CRTs
(an Attitude Director Indicator--ADI and a Navigation

Display--ND), a Head-up display (HUD), control
panels for the dedicated flight displays, and a Control
Display Unit (CDU) for the research system flight

management computer (FMC).

Other instrumentation and controls used in the FDRS

are unmodified, conventional B-757 flight deck
equipment. This equipment includes all other flight

instruments and controls (including the airspeed,

altimeter, vertical speed indicator, standby instruments),
the engine indication and crew alerting system
(EICAS), mode control panel (MCP) controls and logic,

manual- and auto-throttles, autopilot, and manual flight
controls. The test subject sits in the left-hand seat and
the pilot-in-command (PIC) sits in right-hand seat. A

second safety pilot will normally sit in a flight deck
jump seat to assist and monitor flight operations. 4

Transt_ort Research System (TRS)

Figure 3 shows the high level view of the FDRS and

TRS onboard the ARIES B-757. The TRS is composed

of various subsystems including a Silicon Graphics
Incorporated (SGI) Application Onyx computer, an
input and output (I/O) concentrator, a flight

management computer subsystem, a data acquisition
subsystem, a Global Positioning System (GPS) and
Differential GPS subsystem, a data link subsystem, and

a Shared Common Random Access Memory Network

(SCRAMNet+). The SCRAMNet+ is a high-speed
fiber optic replicated shared memory communication
network manufactured by the Systran Corporation.

Each TRS subsystem is installed on a pallet in the
ARIES cabin. Different subsystems of the TRS
interface with the SCRAMNet+ through VME-based
chassises. Each VME chassis consists of a Motorola

PowerPC MVME-1604 embedded processor board,
which utilizes a 133 MHz MPC604 PowerPC

processor, running VxWorks 5.3 as the real-time
operating system.

The Application Onyx computer is used to process
research applications and to generate research displays
in the FDRS. The I/O concentrator is the interface

between the aircraft sensors and other research

subsystems of the TRS. The I/O concentrator is a VME
chassis consisting of a basic Motorola Power PC

processor board, a Datum time and frequency module, a

SCRAMNet+ module, analog input and output cards,
discrete input and output cards, Condor AR1NC 429

cards, and a VME bus analyzer. The Datum time and
frequency module is used to provide an accurate time
source derived from the Ashtech GPS receiver for TRS.

The flight management computer subsystem also
consists of a VME chassis, a Honeywell flight
management computer Product Improvement Package

(FMC PIP), a Smiths Industry CDU, an Ashtech GPS
receiver, and two Fieldworks laptop PCs. The FMC
PIP is used to provide navigation and guidance in the

FDRS. The data acquisition system is used for

recording and limited post processing flight-test data.
The data acquisition system consists of an Intel Pentium

III personal computer with a 133 MHz CPU. s

Research System Integration Laboratot'y (RSIL) and

Flight System Integration Laboratot'y (FSIL)
Clones of the TRS were implemented in two ground-
based laboratories, the Research System Integration

Lab (RSIL) and the Flight System Integration Lab
(FSIL), to provide flight software and hardware
development, integration, validation, and maintenance

capabilities under the same research system architecture
of the ARIES B-757. A Simulation VME chassis exists

to provide the TRS an interface with either the RFD or

the IFD simulator, to facilitate an arena for end-to-end
simulation and testing of applications migrating to the

ARIES. A flight control computer (FCC) VME chassis

is equipped with triplicate FCC's to accommodate
ground testing of research applications with actual
flight-rated FCC's or with a simulated version of FCC's
from the simulation software. The RSIL and FSIL

could also operate without any actual simulator cab by
using a RSIL Operator's Station. The Operator's

Station consists of an attitude display and a map

4

American Institute of Aeronautics and Astronautics

Figure 2. ARIES B-757 Airplane

5

American Institute of Aeronautics and Astronautics

Video
Lines

Mode Control Panel

EADI

EADI

ADI

ND

r i l

I

I

I

I

I

I

I

I

I

I

I

I

I

I_

Niiiiiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

ARINC 429

Link
EDCP

Transport Research System

[] FDRS Elements

[] TRS Elements

[_ Conventional Airplane
Elements

Figure 3. Flight Deck Research Station and Transport Research System Onboard ARIES

American Institute of Aeronautics and Astronautics

display,aModeControlPanelto selectthe autopilot
andflightguidanceoptions,andanelectronicdisplay
controlpanelto performanengineeringcheckout.
Figure4 illustratestheconfigurationof theRSILwith
theIFDorRFDsimulatorin theloop.

Research Flight Deck (RFD) and Integration Flight

Deck (IFD) Simulators
The RFD and the IFD simulators are used to provide

simulated flight deck environment and functionality for
researchers to conduct pilot-in-the-loop aviation

experiments. The Research Flight Deck (RFD)

simulator cab was designed to represent an advanced,
two-crewmember, subsonic jet transport airplane. The
cab layout was based on the "best" components

contained in the Boeing 777, 747-400, and MD-11, the
Airbus series of airplanes, and the NASA B-737
Transport Research System Vehicle airplane.

The RFD cockpit contains eight "D-size" CRT displays,
hydraulic side-stick controllers that are back-driven by

the autopilot system, and a flight management system
with two control display units. Subsystems and control

panels are based on those of a B-757 airplane. The

cockpit is designed to be modular so that cockpit
configuration may be changed appropriately to satisfy
research requirements.6 Figure 5 is a recent picture of
the RFD simulator.

The Integration Flight Deck (IFD) simulator cab is an

engineering cab designed to represent the flight deck of

the NASA ARIES B-757 airplane. The cab is
populated with flight instrumentation, including the

overhead subsystem panels, to replicate the B-757.
Simulation software is hosted on a Simulation Onyx

which communicates simulated aircraft responses and

pilot inputs with the TRS in RSIL or FSIL via the
SCRAMNet+. The IFD cab is used for flight testing
development for the ARIES B-757 and for aircraft

system integration studies. Figure 6 is a recent picture
of the IFD simulator.

Both the IFD and RFD cockpits contain a "Panorama"

visual out-the-window display system. This system
provides a 200-degree by 40-degree visual out-the-

window display to add realism to piloted experiments.
Databases for nine different airports that contain other

airplanes, trucks, and service vehicles found at airports

can be projected dynamically on the out-the-window
scene. Other airports may be added if required to
satisfy research needs.

Software System
Before 1995, the simulation software was programmed

in the FORTRAN language. The structure of this

software architecture was procedural in nature.
Software that dealt with multiple vehicle simulations
were hard coded with a fixed number of vehicles and

vehicle types to reduce the complexity in developing
and maintaining a flexible multiple vehicle simulation.
The desire to improve the efficiency in simulation

development, productivity of the software developers,

and the flexibility of operating multiple vehicle
simulation in a real-time computing environment led to

the evaluation and development of a simulation
software framework that was designed in OO fashion

and programmed in C++ language. This software

framework was named the NASA Langley Standard
Real-Time Simulation in C++ (LaSRS++).

7

The simulation-to-flight concept requirement of using
common software and hardware for all TRF called for

the need to produce software that was flexible and that

could be adapted or reused for multiple purposes. The
successful evolution of LaSRS++ simulation software

was timely for implementing this design approach. OO

designed software could be used to hide the hardware
details behind a common class interface. Different

hardware interfaces could be easily substituted and used
with the same software interface. This is the familiar

OO approach of 'programming to an interface'. This
approach involves abstracting implementation details

and isolating them from the application. Also, with this
approach, software components could move easily from
the unit test stage to simulation, and then to a flight test.

A rigorous software development process has been
utilized to ensure that software is thoroughly designed,

developed, and tested before using it for a flight test
operation. The objective of this process is to provide

optimum mission and safety assurance. Figure 7 shows

the software development process that includes the
verification and validation process. Several
commercial-off-the-shelf software products are used as

development tools throughout the software
development lifecycle. The software design tool,
Rational Rose, from the Rational Software Corporation,

is used to visualize and construct software design

artifacts through Unified Modeling Language (UML).
Other tools fi'om the Rational Software Corporation

include Rational ClearCase for software configuration
management, Rational Purify for debugging tun-time

errors and memory management issues, and Rational

Quantify for highlighting performance and identifying
bottlenecks and untested code in applications. SGI's
ProDev Workshop is also used as development tool for

similar purposes. Code documentation is implemented
by the shareware Doc++ software tool. The TRS
software system consists of common and facility

specific software. Facility specific software provides

7

American Institute of Aeronautics and Astronautics

Analog,

Discrete, and
AR1NC 429

Lines

Video Lines iiiiiiiiiiiiiiiiApipi!iiii#a_iiioiOiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiOOYXiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiCioi_iipi_eiiiiiiiiiiiiiiiiiiiii

[-R_se_chS;t_m Int_'gr_tion I'_ab--(R'S_g)-
I

Analog,
Discrete, and
AR1NC 429

Lines

Switch between Sim

I Cab and Op Station

'/iI
Discrete and

[ARINC 429

[Lines

[

I

[] Simulator-Specific Elements

D TRS Elements

Figure 4. TRS Residing in RSIL with RFD or IFD for End to End Testing

8

American Institute of Aeronautics and Astronautics

Figure 5. Research Flight Deck Simulator

Figure 6. Integration Flight Deck Simulator

9

American Institute of Aeronautics and Astronautics

Requirements

Analysis

Preliminary IDesign

I DetailedDesign

Production I

•.............:_.:_:_:_.on.:...............

grat"

Code Review

Code Development 1

Unit Test

Verification

, ' Validation

Figure 7. Software Development Process

10

American Institute of Aeronautics and Astronautics

simulation functionality exclusively. Figure 8 shows

the Work Breakdown Structure of the software system.

TRS Software Design

The following designs discussed and depicted have
many details eliminated to emphasize the prominent
features. They demonstrate that a solid but flexible

underlying communication framework has resulted in

somewhat consistent designs. Object oriented purists
would point out many procedural characteristics in the

designs, a fact that is undeniable. However, throughout
the lifecycle, the TRS has met hard implementation

schedules resulting in a more pragmatic approach.

Certain particular design characteristics are prevalent
because they naturally de-coupled class relationships
making them easier to migrate from one environment to

another. The containment by aggregation rather than
derivation and the use of mediation also makes

incremental testing easier. Other design patterns used

are factory, builder, and singleton. A formalized

approach to these patterns may be found in the book
Design Patterns by Gamma, et al8.

LaSRS++ Framework Communication

The simulation systems and the TRS high speed I/O are

built on Systran Corporation's SCRAMNet+ high speed
network and Motorola Power PCs operating in VME
back-planes using the WindRiver VxWorks real-time

operating system. Each SCRAMNet+ node is
configured with two megabytes of memory and tibet"
optics media adapters. The baseline TRS consists of

two VME crates with Power PC MV1604 processors

and a Silicon Graphics Onyx computer connected in a
network using a Systran Quad Switch. The VMEs are

populated with various I/O cards and each serves a
specific function. The VME on the IO Concentrator

receives ARINC digital signals from the various basic

B-757 systems buses (Inertial Reference System/Air
Data Computer/EICAS/Radar Altimeter) and is the
primary source of data for ARIES B-757. A second

VME provides communications with a Honeywell FMC
which is separate from the basic B-757 systems FMCs.
The Onyx contains eight 195 MHz MIPS R4400 CPUs

with three graphics pipes connected to a Multi Channel

Option that provide three video outputs from each pipe.

To avoid hard-wired addresses for variables and the

conflicts that arise in connecting arbitrary combinations

of SCRAMNet+ nodes with different configurations,

the SCRAMNet+ memory is managed through an
allocation scheme that supports initialization from
configuration files and runtime allocation. The

mechanism is a simple table in memory that associates
block names (ASCII) with addresses for data blocks in
SCRAMNet+ memory. A special system state area

contains information about the state of the system.

When the controlling computer (system master) has

created the table, the system state area is changed from
start to real-time. Server and client SCRAMNet+

nodes are programmed to monitor the system area,

notice the state change, and proceed to search the table
for blocks containing information for them.

Synchronous Communication

The framework system software is designed to operate
the VME processors as I/O subsystems that are

configurable at runtime with the Onyx as the system
master. An example of this configurability would be

the addition of an analog-to-digital converter. A

properly jumpered card would be installed in a VME
subsystem and the data block added to the configuration
file read by the main host. The only software requiring

modification would be the main application on the host.
This architecture, used successfully throughout the
Langley simulation facilities, is also used in the TRF
environment.

An important characteristic of this system is that the

synchronous I/O data (such as analog and discrete) is
cycled at the rate and time demanded by the main

application. The main program on the SGI iterates at a

stable 50 Hz and provides frame start times within one
millisecond and thus, is suitable for numerical

integration and digital filter implementations. The

SynchronousChannel software hierarchy used by the
main application is shown in Figure 9. A
SynchronousChannel derived class such as

AnalogToDigitalChannel supports analog input for one

or more physical modules on a particular I/O
subsystem. Each module has sixteen inputs. The base

class provides common setwices while derived classes
provide details of processing for a specific type of

module. For an installation with two modules, input

lines are accessed individually via the derived class
using integers from 0 to 31. The ChannelBuilder is a
factory class that may optionally be used to create

SynchronousChannel objects and performs the details
of acquiring the SCRAMNet+ blocks, constructing
objects and processing error conditions.

Asynchronous Communication
Asynchronous communication types such as RS-232

and AR1NC 429 protocols are often required in
simulations and the aircraft environment.

Communication channels for asynchronous type data

are also available using software implemented
specifically for that purpose. Figure 10 is the design of
the framework for an asynchronous communication

hierarchy that is used extensively. These template
classes provide a read/write interface (similar to UNIX
system I/O) to queues established in SCRAMNet+.

The ScramnetMemoryBlock, which is a specialized

11

American Institute of Aeronautics and Astronautics

1.0 Common Software

1.1 Systems
1.1.1
1.1.2

1.2 Interfaces

1.2.1
1.2.2

1.2.3
1.2.4

1.3

Hybrid GPS
Synthetic Instrument Landing System

Synchronous Communications
Asynchronous Communications
SCRAMNet Communications

Experimental Display Control Panel Interface
IFD Displays

1.3.1 Attitude Director Indicator Display for Left Side
1.3.2 Navigation Display for Left Side

2.0 Facility (Simulation)
2.1 Systems

2.2

Specific Software

2.1.1 Aerodynamics Model
2.1.2 Propulsion Model
2.1.3 Fuel

2.1.4 Engine Model

2.1.5 Landing Gear Model
2.1.6 Effectors/Actuators/Setwo Models

2.1.7 Hydraulics Model
2.1.8 Mass Model
2.1.9 B757 Mode Control Panel

2.1.10 Thrust Management System
2.1.11 Auto-pilot/Flight Director Model
2.1.12 Flight Controls System
2.1.13 GPS

2.1.14 Radar Altimeter

2.1.15 Air Data Computer
2.1.16 DME
2.1.17 IRS

2.1.18 VOR

Interfaces

2.2.1 RFD Cockpit Interface

2.2.2 IFD Cockpit Interface
2.2.3 Visual Scene Interface

2.2.4 Sound system Interface
2.2.5 Head-down Display Interface

2.3 IFD Displays
2.3.1 Attitude Director Indicator Display for Right Side
2.3.2 Navigation Display for Right Side

2.3.3 EICAS Displays (Upper & Lower)

2.4 RFD Displays
2.4.1 Primary Flight Displays (Left & Right)

2.4.2 Navigation Displays (Left & Right)
2.4.3 EICAS Displays (Upper & Lower)

2.4.4 Multi-functional Displays (Left & Right)

2.5 Onyx System Software
2.5.1 Supetwisor
2.5.2 Device Driver

Figure 8. Work Breakdown Structure for B-757 Software System

12

American Institute of Aeronautics and Astronautics

AnalogToDigitalChannel

AnalogToDigitalChannel

AnalogToDigitalChannel

update ()

AnalogToDigitalChannel

getVoltage ()

getRaw ()

getNonnalized ()

displayToStream ()

scale ()

operator ()

normalize ()

DigitalToSynchroChannel

DigitalToSynchroChannel

DigitalToSynchroChannel

update ()

DigitalToSynchroChannel

putAngularValue ()

displayToStream ()
scaleRadians ()

operator ()

nearestInteger ()

VdtOutputChannel

/
SynchronousChannel

SynchronousChannel ()

SynchronousChannel ()

update()
SynchronousChannel ()

getBytesPerModule ()

getChannelCount ()

getChalmelsPerModule()

getModuleCount ()

getName ()

getBaseAddress ()

I SynchroToDigitalChannel

DiscreteOutputChannel

MemopcBlock

getSizeInBytes ()

isInvalidChannelIndex ()

DigitalToAnalogChalmel operator = ()

DiscreteInputChannel / /

VdtInputChannel

"has a"

Aircraft _elationshiD

'r'iS a"

elationshiD

Wing

B-757

ChannelBuilder

instance ()

destroyInstance ()

makeAnalogToDigitalChalmel ()

makeDigitalToAnalogChalmel ()

makeSynchroToDigitalChalmel ()

makeDigitalToSynchroChalmel ()

makeDiscreteInputChannel ()

makeDiscreteOutputChannel ()

makeVdtInputChannel (

makeVdtOutputChannel

displayToStream ()

ChannelBuilder ()

ChannelBuilder ()

ChannelBuilder ()

operator ()

acquireMemmTBlock (

0 . I

Figure 9. Synchronous Communications

13

American Institute of Aeronautics and Astronautics

I cramnetMemoryBlock I

1

I AsynchronousChannelBase
ScramnetReader

AsynchronouslnputChannel
AsynchronousOutputChannel .

AsynchronousChannel

"has a"

Aircraft _elationship] Engine

.ses lationshil_ relationship

B-757 I [Fuel

Figure 10. Asynchronous Communication Hierarchy Design

14

American Institute of Aeronautics and Astronautics

MemoryBlock,isusedbecauseit providesmethodsto
transmitinterruptand receiverinterruptenable
SCRAMNet+memorylocations.

Agoodapplicationexamplewouldbetheoutputhalfof
a simulatedAircraftCommunication and Reporting
System (ACARS). The main application would

construct an AsynchronousOutputChannel to an

ARINC transmitter and invoke the ::write() method to
transmit encoded data-link messages. During

initialization, the I/O subsystem would acquire the
ScramnetMemoryBlock from the SCRAMNet+ table,

construct an AsynchronousOutputChannel, and spawn a

task that sleeps until an interrupt is generated by the
main application ::write(). The interrupt causes the task
to wakeup, read the data in the channel, and transmit
the data on the selected transmitter.

AsynchronousChannels are often associated with, but
not limited, to hardware I/O.

Communication using the ARINC 429 protocol 9 is an

important capability for the TRS and for the integration

of flight hardware into the simulation environment.
The majority of data available on the 757 is from the

digital system buses from the various basic B-757

systems. The LaRC simulators incorporate flight
management computers, flight control computers, mode
control panels, and various other devices that require an

AR1NC 429 protocol. Figure 11 depicts a group of
classes built-up from framework communication that
provides main applications the ability to establish a

channel of ARINC 429 communication to an arbitrary
node and device. The notion of a client/server

relationship resulted in two primary components of the

architecture being the ArincAllocator and the
ArincServer. The ArincAllocator provides services to

applications that convey the communication

configuration to the I/O subsystem. Details for the
communication are passed to the server through a
SCRAMNet+ memory block specific to that purpose.

The server task is spawned on the PowerPC I/O
subsystem during system initialization and services
requests for input and output by constructing and

linking objects to accomplish the communication.

The design also attempts to keep the content of the

communication separate from the mechanism. Other
challenges for the design are the wide variety of

AR1NC specifications that use the AR1NC 429 protocol

for the underlying communication. Conversions of data
to and from binary ARINC format are provided by
conversion objects created with data from an

ArincDatabase class. These objects have overloaded
methods with float type arguments that return AR1NC
format words, and AR1NC format arguments returning

float types. The diagram in Figure 12 shows the

ILSOutput class that is a typical AR1NC bus

implementation class. ILSOutput contains an
ArincChannel by aggregation and uses
ConversionFactory to obtain references to Convert

objects during construction. Multiple ILSOutput
objects may be created to receive and transmit within
the same application.

TRS Application Design and Flight Test Projects
The primary baseline functions provided by the ARIES

TRS software include primary and navigation flight
deck displays, integration with a flight management

computer, and a GPS based instrument landing system

or GLS. The GLS is capable of providing guidance
signals to the flight control computers during coupled
approaches flown by the basic B-757 autopilot system.

A key part of the GLS system is the implementation of
a third order complimentary filter combining GPS
position and inertial accelerations from the ships

inertial reference system providing high rate position

updates.

Joint Runway Friction Projectl°--The Joint Runway
Friction Project was the first deployment using the new

TRS on the ARIES B-757 and followed shortly after

the TRS baseline instrument check flight. The role of
the TRS on ARIES was to compute coefficients of
fi%tion, stopping distances, and kinematics for the

accumulation of brake energy for two aerodynamic
configurations. This first project encapsulated the
various computations in a class with an interface for

controlling inputs and outputs shown in Figure 13. An

object of this type was created in AircraftBuses to
which methods were added to supply inputs, as well as

retrieve, display and record outputs. The
aircraftBuses ::update() method invoked the

::computeRunwayFriction 0 method as another internal

helper method. The B-757 software simulation package
and the RSIL lab were used to test the computation of
the kinematics prior to local flight tests.

Airborne Information for Lateral Spacing (AILS) 11--
The Airborne Information for Lateral Spacing Project

flight test followed and was the culmination a multi-

year project jointly involving NASA Langley and
Honeywell Incorporated. The premise for the flight test

was alerting-algorithms operating in a red-label Traffic
Collision Avoidance System (TCAS) computer

programmed to receive Automatic Dependence

Surveillance-Broadcast (ADS-B) aircraft state
information from another aircraft on a closely-spaced
parallel approach. A full simulation using the IFD

simulator provided pre-recorded data of an aircraft on a
parallel approach to the RSIL in addition to AR1NC bus
data simulating a Mode-S transponder and GPS

15

American Institute of Aeronautics and Astronautics

I As nchr°n°usOutputChanne'I
"p.....Oata0

J" 0If
/ ArinclnputStream

, _ 10 I_ t_b Iocati id*

I ArinclnputChannel I e . -- . I I_l,receiver_nurnber : unsigned

I_ t_b Iocati id* I l- AnncRecelver I I _1View::Asynch

I_ch I inf tion: ArincCh I* I I_l_data_handlers[]: DataHandler-- NULL I IOoL_oLOI....... i
• - . . arinc device • ArincModule = NULLI ,: Log,ca,V,ew::Ar, ncCh I I I_l,arinc_de. =NULLI I

I -- ._1 I_idterate : bool = true I I

I'° Data() I i,:_ogic_, View::DataHandler _ ,,1"_

' _ I_receive" ' _ rTask0 I vAv[/u', r_ --1 ,i

• •• I _installHandler0 I Lf_ I •/

"•• 4_terminateTask0 _ ///

", I _ /
" I

• Arinc429Packet

/i

ArincChannel

_word_count : unsigned

_l, equiprnent_id : unsigned

_channel : unsigned

_data[l] : Unsigned32Bit

_l, arinc_card : unsigned

ArincOutputChannel

_scrarnnet_base_location : void *

_.arinc_rnodule : ArincModule = NULL

_.channel_inforrnation : ArincChannel *

: Logical View::ArincChannel

4updateChannel0

_.initializeChannel0

AnncServer

I_arinc_rnodules[] : ArincModule = NULL

I_out_channels[] : ArincOutputChannel *

I_receiver_tasks[] : task_id

.1_: Logical View::ArincModule

.1_: Logical View::ArincOutputChannel

_1.: Logical View::ArincReceiver

_1.: Logical View::ArincOutputStrearn

i_addlnputChannel0

_'addOutputChannel0

i_getArincModule0

_'updateOutputChannels0

_'addOutputStrearn 0

_l'addlnputStrearn 0

_terminate0

_l'initialize0

'l_run0

_initializeCom munication0

_.putS crarn NetAddress0

/ ,4
/•

/, /
• /

/
ArincModule

0..3

J
_'repeating Message 0

_blockMessageO

_updateMessageO

ArincOutputStream

_.transrnitter_nurnber : unsigned

_.buffer : AsynclnputChannel

_.arinc_rnodule : ArincModule

l_l, scrarnnet_base_location : void*

, @ : Logical View::Asynchronous

i.::;::t-..::::: =.

_11 I vxWorks
task [_

AsynchronouslnputChannel I

"has a"

Aircraft _elationship I Engine

ZTX"is a" "depends on" II
I relati°nship relationships/

B-757 I I Fuel

Figure 11. Subsystem ARINC Communication Components

16

American Institute of Aeronautics and Astronautics

I ArincTableEntry

l

I ArincChannel A typical bus interface objec 1

t may be constructed to

transmit or receive.

ILSOutput(node_name, transmitter, argname, driver, device

ILSOutput(node_name, device, receiver)

getRunwayHeading0

putRu nwayHeading0

Arinc429Packet

_allocateArincChannel(arinc_channel) 1

The allocator implements the [E1

table driven data for the Arinc JServer on the /O subsystem.

The database contains the

conversion details, descriptive
strings and transmit rates for

periodic type data.

ConversionFactory 1

• __ I Applications can construct packet

.... te(equipment, label, sd,)j t objects, conversion objects, or use 1_-] the factory for 'standard'

t

"has a" reference

Aircraft _ationship I Engine

'is a" "depends on"i

I relationship relati°nship N/.=

B-757 v_"has a" value I Fuel

relationship

Figure 12. ILS Output Class, Another ARINC Communications Design

17

American Institute of Aeronautics and Astronautics

FlightMain Application

Prilaary source of objects [_

providing ships systela digit I a
1 bus data

Syntheticlls

AshtekModes I

HybridCpsIru

i
Aircraft Buses

RunwayFrictionOas

BrakingEnergy

I sor I

/
/

I
I

I

/
/

I
I

"has a" reference

Aircraft _ationship I
'iS a"

elationship

B-757 v_"'has a" value I
relationship

Engine

_ "uses _
relationship

Fuel

Figure 13. First TRS Baseline Design

18

American Institute of Aeronautics and Astronautics

NavigationSatelliteSystem(GNSS).Thesimulation
sideof theRSILwasoutfittedto transmitADS-B
messagesto theTCASline replaceableunit (LRU)
computerusingaradiofrequency(RF)signalgenerator.

TheTCASinputsandoutputsrequiredfortheflighttest
wereconnectedtotheTRSsideoftheRSIL.Figure14
is the designusedin the TRS and showsthe
AilsHandlercontainingfourobjectsrequiredfor the
periodicAR1NCI/OwiththeTCASeachcontainingan
AtincChannel.TheTcasVapsInterfaceisaspecialized
classprovidinginputprocessingofasynchronous'track
file' datafromtheTCASfor deliveryto theVirtual
PrototypesIncorporated'sVisualAPplicationSbuilder
(VAPS)graphicsprocesswhichin thiscasewasa
modifiednavigationdisplay.TheAilsHandlerobject
wascreatedin themainprogramatthesamelevelas
AircraftBusesforaccessibilitytothegraphicsanddata
recordingcomponents.

Year 2000 Flight Experiments
The level of activities for Year 2000 for the ARIES B-

757 airplane was elevated and included multiple
projects. Each of these projects were developed

separately and then integrated and tested in the RSIL
environment. There were two software releases

operated during flight tests on ARIES in 2000. Adding
several new projects, eliminating old projects and

managing a release configuration became complex.
The first effort to partition research projects from the
baseline research system was the introduction of a new

class, ResearchSystems, with the purpose of

constructing and containing the project classes. Figure
15 illustrates the TRS design for Year 2000.

Community Noise Abatement Program--The B757

Community Noise Abatement Program or the Aircraft

Noise Prediction Program (ANOPP) flight test was a
rapidly developed project for flight test activities
supporting ground-based sound instrumentation.

Project development occurred early in the year parallel
with another flight test project. The ANOPP flight test
requirement was for the ARIES B-757 to fly accurate

ground tracks, with specific vertical path trajectories

over microphone stations in approach and take-off
configurations. Additionally it was desired to control

the take-off/go-around engine power to derated-thrust
settings not available from the basic B-757 system

thrust management computer. The challenge in this

circumstance was completing the checkout of the
simulated thrust management computer while testing
the TRS implementation of the concepts to be used for

lateral path and thrust management during the flight
test. Figure 16 illustrates the ANOPP Design.

Runway Incursion Prevention System (RIPS) and Hold

Short Advisory Landing Technology (HSALT)--RIPS
and HSALT were sister projects that consisted of a
head-down airport diagram and a multi-mode head-up

display running as graphics processes on the
Application Onyx computer and driven by the TRS
fi'om a common shared memory segment. The RIPS

airport diagram depicted real-time up-linked airport

traffic, ADS-B traffic, Controller Pilot Data Link
Communication messages, and runway incursion alerts

fi'om two airborne sources and a ground source. The
implementation relied heavily on the baseline

communication mechanisms. The project was

developed as a simulation-only project after which the
software was transferred verbatim to the TRS.

Synthetic Vision Display Concepts (SVDC)--The
SVDC project demonstrated photo-realistic and
synthetic out-the-window imagery on a large format flat

screen mounted on the instrument panel in front of the

test subject pilot and a head-up display. The imagery,
which was a separate software effort, was produced by

PCs using high-end graphics cards. The TRS supplied
data to the PCs that used SCRAMNet+ cards and a

version of the framework SCRAMNet+ hierarchy

ported to the Windows NT environment.

Weather Accident Prevention (WxAP)--The WxAP

program uses data from the basic B-757 body-mounted
accelerometers and digital system sensors as inputs to
algorithms that compute in-situ turbulence metrics for

correlation with experimental weather radar. The

project was planned from the start to undergo initial
implementation and testing in the simulation and then

transferred to the RSIL/TRS environment. The design
approach was to have the WxAP hierarchy mediated by

a simulation-specific class and a TRS-specific class.

Final testing prior to flight tests included recording data
in the simulation and in the RSIL/TRS during the same
run and co-plotting the results.

Year 2001 Flight Experiments
The activities for Year 2001 will include additional

flight tests for SVDC and WxAP projects. The

software development is largely the expansion of the
requirements for the existing projects. However, during

the interlude, a design was added to the TRS that assists
in managing the flux of projects and reduces the

workload when shifting the mix of projects for a

software release. The design as shown in Figure 17
modifies the existing ResearchSystems class to include
and Standard Template Library (STL) vector of

references to ResearchProject objects. Projects are
derived from ResearchProject and inherit the common
interface on which ResarchSystems operates as it
iterates on the STL vector. The details for the

19

American Institute of Aeronautics and Astronautics

AILS

GnssuBus

I0 in TRS

XTBus

Ai 1 sG1 obal s

Ai 1 sHandl er

Tr fMai nWi ndow

GUI

Support

ArincChanndl

Ari ncStream

TcasToTest 1

TestToTcas

VapsDriver

from Frame Work)

TcasVapsInterfac_

"has a" reference

Aircraft _ationship I
'_S a"

lationship

B-757 _"has a" value I

relationship

Engine

"uses"

'elationship

Fuel

Figure 14. TRS Software Design for AILS

20

American Institute of Aeronautics and Astronautics

_ m

This class manages the D

ln-Situ algorithms

!
WxapAIgorithmHandler

WxapAIgorithmHandler 0

-WxapAIgorithm Hand ler 0
initialize()

update()

ResearchSystems j
(from Baseline)

WxapHandler

WxapHandler0

< WxapHandler0
initialize()
-WxapHandler 0

update()

(_ operator =0

Turbu_SituAIg°rithm i

NCARTu rbulencelnSituAIgorithm

_getEpsilon0
'levaluate0

'linitialize0
7

/
/

/

I one of five turbulence

I algorithms 1

WxAP in TRS

_ WxapDasOutput

(fromTRS WxAP)

1

-radar_ bus_ handler

_andler

const double

WxRadarBusHandler 0

WxRadarBusHandler 0
update()

-WxRadarBusHandler 0

operator =0

AirDataComputerOutput

IrsOutput

(from Baseline)

-radar_bus

WxRadarBus I

l
I

/
#

Fmclnput

"has a" reference

Aircraft _ationship I
'iS a"

elationship

B-757 v_-"has a" value I

relationship

Engine

"uses _

'elationship

Fuel

Figure 15. Year 2000 TRS Software Design for RIPS/HSALT/SVDC/WxAP

21

American Institute of Aeronautics and Astronautics

Communicaity Noise Abatement (ANOPP)

Methods and attributes shown for Dh

baseline classes are only those |added or used for ANOPP.

iConstructed in the main program and -h
supplied with reference to other main |

J
AircraftBuses

_l_use_anopp_cutback_epr • bool
_l_cutback_epr • float

_overwriteFmcEprData(cutback_epr • float, overwrite • bool
_update0
_ll_qnsferFmcDataToPsp0

"-----,o

ResearchSystems

_,aircraft_buses
_,fmc_handler

_l, graphics_handler
_noise_abatement • AnoppHandler

TrfGraphicsHandler]____ _ResearchSystems0_~ResearchSystems0
_maximum_pitch : float I ,-_ _update0

_maximum_pitch_ncd : boo l _l_getScram netBIockAdd ress0

_putMaxPitch Reference(degrees flo i

TrfFmcHandler

_l_epr_reference : float
_l_use_research_epr : bool
_l_anopp : 13o01
_l_research_tmc • TmcArincOutput

_enableResearchEpr0
_putEprReference0

AnoppHandler

_AnoppHandler(fmc_input, radio_altitmeter, tmc)
_~AnoppHandler0
_update0 : void
_alterTmclnputToFmc0 • bool
_alterOutputFromFmc0 • bool
_getPerformCutback0 • bool

Fmc!nput L._... _ _.___.--_---_"_'_ _getCutbackEpr0 float_getPitchReference0 • bool

-- y _computePitchGuidance0
_getEprTarget0 I " _l_registerG uiPanel(anopp_handler • AnoppHandler)

"getGrossWeight0 , . /depe _ ne]_

_copyChannelContents0 1 "
_putEprTarget0 I _getRatingTwoOperate0

_getClbModeOperate0
_getGAModeOperate0

_getEprActualLeft() ndentVariableO
_getEprActualRight0

RadioAItitmeterOutput I [DependendVariableOne 1

_getRadioHeight0 I t t_getBusValueByLabel0

_ ScramnetReader i

l !

Aircraft

B-757

"has a" reference

ationship

v"'has a" value

relationship

Engine

Fuel

Figure 16. TRS Software Design for ANOPP

22

American Institute of Aeronautics and Astronautics

ResearchSystems

_$createlnstance 0

_-ResearchSystems 0

_$getlnstance 0

_update 0

_getTcasDisplayBu sReference,

_initializeData Recording 0

_recerdingOff 0

_isRecordingOn 0
1

ResearchProject

_ResearchProject 0

ResearchProject 0
update()

_-ResearchProject 0

_saveDataToFile 0

_erase 0

_setRecordingOn 0

_setRecordingOff 0

_isRecordingOn 0

RunwayFr!ction

)Ru nwayFriction 0

_Ru nwayFriction 0

)update 0

)-RunwayFriction 0

_saveDataToFile 0

_saveDataT°File0 _11_oPerator =0
getTimer 0 .,,

_createResearchProjects0 _

i_getScram netBIockAdd ress0 // |

l'com putations0 /" |

_'ResearchSystems 0 /" |

[i_ResearchSystems0 /z |

_'operator =0 //

1 _ /_ / = SvsHandler

/ _ 0..1 / -_--
/ I / "_SvsHandler0

/ _l'SvsHandler0

+instance / "_ putDeclutterDiscrete 0

/ _SvsHandler0
/z _putBetaVane 0

/ 'l_putVref0

/z _putVmin 0

// _putGeoidCorrection 0

Ata ss ProeLe____ _update0
_putHybrid0

_printTcasTargets 0

#

12oo2projeo

egisterGuiPanel 0

ransferTcasData 0

endDummyTcasTargets 0
perator =0

_X ! _getBrakingEnergy0

updateScramnetBIock 0

recordRunwayFnction 0

createGuiPanels 0

0
WxapHandler

l_WxapHandler0

WxapHandler 0
getWxapAIgorithm Ha ndlerReference 0

41'-WxapHandler0

41'update0

_initializeData Recording 0

41'saveDataTo File0

l'operator =0

"has a" reference

Aircraft _ationship I

'is a"

elationship

B-757 _'has a" value I

relationship

Engine

_uses _

'elationship

Fuel

Figure 17. TRS Design with SVDC/WxAP Projects for Year 2001

23

American Institute of Aeronautics and Astronautics

constructionof projects are isolated to the
ResearchSystems::createResearchProjectswhich has 7
implementationinaseparatecompilationunit.Projects
aremaintainedin separatedirectories,withindividual
buildscriptsforprojectlibraries.TheTRSbuildscript
controlswhichprojectsarelinkedandconstructed.The
potential exists to configureruntime project
instantiationfrom an initializationfile or from
commandlineoptions, s

Conclusion

The process to satisfy the simulation-to-flight concept
has been implemented effectively as evidenced by 9

research results from various past experiments. The
TRS software design has also gone through an
evolution process to increase the flexibility and 10

efficiency to support multiple projects during a single
integrated flight experiment. The simulation-to-flight
concept research processes will be continuously 11

improved for long term success.

Acknowledgements

The authors gratefully acknowledge the significant
contributions of Charlie Knox, Carey Buttrill, and

Jacob Houck from the NASA Langley Research Center

Airborne Systems Competency for providing valuable
reviews and critics for this paper. The efficacious
guidance provided by Simon Chung from the NASA

Scientific and Technical Information (STI) Program
Office in navigating through the Agency's STI systems
is also greatly appreciated.

Leslie, Richard A.; Geyer, David W.; Cunningham,
Kevin; Glaab, Patricia C.; Kenney, P.S.; and
Madden, Michael M.: LaSRS++ -- An Object-
oriented Framework for Real-time Simulation of

Aircraft. AIAA 1998-4529, Modeling and
Simulation Technologies Conference and Exhibit,

Aug. 10-12, 1998

Gamma, Erich; Helm, Richard; Johnson, Ralph;
and Glissades, John: Design Patterns Elements of

Reusable Object-Oriented Software. Reading
Massachusetts: Addison-Wesley, 1995, pp. 81-127

ARINC Mark 33 Digital Information Transfer

System (DITS) Part 1. AR1NC Specification
429P1-15, Sep. 1, 1995
Yager, Thomas J.: Aircraft and Ground Vehicle

Winter Runway Friction Assessment. NASA TM
1999-209142, 1999
Rine, Laura L.; Abbott, Terence S.; Lohr, Gary W.;

Elliott, Dawn M.; Waller, Matwin C.; and Perry, R.

Brad: The Flight Deck Perspective of the NASA
Langley AILS Concept. NASA TM 2000-209841,
2000

References

1 Terminal Configured Vehicle Program, Test
Facilities Guide. NASA SP-435

a Outlaw, Bruce K. E.: Description of the

Experimental Avionics Systems Integration
Laboratory (EASIL D. NASA TM 109072, 1994

3 Cleveland, Jeff I.; Herndon, Sonia S.; Houck,

Jacob A.; Kibler, Kemper S.; Meetze, Lemuel E.;
and Simmons, Harold I.: Real-Time Simulation
User's Guide. 1997

4 Knox, C.E.: The Requirements Document for the

Transport Research System, Version 3.4. NASA
Langley Research Center, 1997.

s Fisher, Bruce D.; and White, John J. II: New

NASA Transport Research Facilities to Support

Research Flight Operation in Present and Future
ATC Environments. 1997 World Aviation

Congress, October 13-16, 1997
6 Smith, R. Marshall: A Description of the Cockpit

Motion Facility and the Research Flight Deck
Simulator. AIAA 2000-4174, Modeling and
Simulation Technologies Conference and Exhibit,

Aug. 14-17, 2000

24

American Institute of Aeronautics and Astronautics

